skip to main content


Search for: All records

Creators/Authors contains: "Grandy, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Central Baja California (BC) experienced tectonism and volcanism that shaped the landscape from the Miocene to Recent. One important feature is the San Ignacio trough (SIT) that hosted a marine seaway or embayment and acted as a physical barrier to animal and plant migration. This barrier may be responsible for a well-known break in the DNA, N and S of this region. Central BC has also hosted contemporary voluminous and chemically diverse volcanism. Radiometric ages provide important constraints on the origins and longevity of critical topographic features. The Baja GeoGenomics research group is investigating the nature and timing of Pliocene marine and tidal deposits in the NE-oriented, low-lying SIT, located W of the peninsular divide. These new data reveal that the Sierra San Francisco, a highland volcanic area immediately N of the SIT, is a series of volcanoes constructed of dacitic and andesitic Peleean domes with voluminous lahar and pyroclastic flow deposits. These calcalkaline rocks were previously thought to be subduction-related magmatism and part of the early to middle Miocene (~2412 Ma) Comondu Group. However, zircon U-Pb and 40Ar/39Ar dates yield ages of 11-9 Ma. These data indicate the Sierra San Francisco erupted post-subduction and is not part of the lithologically similar but older Comondu Group. Within the SIT, 12km NE of San Ignacio at 200 m asl, newly mapped marine tidal deposits, informally called the San Regis beds, indicate that the SIT has been significantly uplifted. Mafic scoria interbedded in tidal deposits yield a groundmass 40Ar/39Ar age of about 4.2 0.1 Ma. San Regis tidal beds are unconformably overlain by a rhyolite ash-flow tuff from the Quaternary La Reforma caldera situated to the E, on the Gulf of California coast. The highly mobile ash cloud flowed W into the SIT at least as far as the San Regis beds locality NE of San Ignacio. The tuff yielded a preliminary U-Pb zircon age of 1.09 0.04 Ma and an 40Ar/39Ar anorthoclase age of 1.11± 0.01 Ma. These dates indicate that the ash-flow was one of the latest erupted from the caldera and its distribution was in part controlled by the SIT. In BC genetic diversity along the peninsula appears to change at the latitude of the SIT. Tidal and volcanic deposits suggest this topographic low persisted for over 4Ma and remains a distinctive feature in the topography today. 
    more » « less
  2. Late Cenozoic evolution of the Baja California (BC) peninsula governs its species diversity, with changes to terrestrial habitats and shorelines driven by volcanic and tectonic processes. New geologic mapping and geochronology in central BC help assess if recent landscape evolution created a barrier to gene flow. The NW-trending topographic divide of the BC peninsula near San Ignacio-Santa Rosalia (27.4N) is a low (400500 m asl), broad (2030 km-wide) pass. At the pass, ~2022-Ma volcaniclastic strata, mafic lavas, fluvial conglomerate, cross-bedded eolian sandstone, and a felsic tuff dip ~515 SW. Similar lithology and chronology suggest these strata correlate to the lower Comondu Group (CG). They are overlain by middle Miocene (~1114 Ma) mafic lavas with similar SW dips that overlap in age with the upper CG. NW of the pass, upper Miocene (~9.511 Ma) post-CG volcaniclastic strata and mafic lava flows are exposed in the Sierra San Francisco and dip ~10 SE on its SE flank, inclined differently than older SW-dipping CG at the pass. The basalt of Esperanza (~10 Ma) unconformably overlies the CG at and west of the pass. Its ~1 regional dip suggests that ~515 of SW tilting occurred prior to ~10 Ma in the footwall of the NW-striking Campamento fault, located at the base of the ~150 m-high rift escarpment. The N-striking Arroyo Yaqui fault, ~10 km E of the Campamento fault in a low-relief region capped by Quaternary marine strata, exposes crystalline basement in its footwall and may be a major rift margin structure. Thus the location, orientation, and age of the divide may be controlled by rift-related faulting and tilting plus beveling and lateral retreat of the escarpment. Pliocene tidal sediments occur up to ~200 m asl ~20 km west of the low pass similar to Pliocene marine strata east of the pass at ~300 m asl, indicating late Miocene to Pliocene subsidence was followed by >200 m of post-4 Ma uplift. Uplift was likely driven by transtensional faulting and possibly magmatic inflation by ~7090 km-wavelength domes. Further mapping will constrain the timing of vertical crustal motions and test whether the tidal embayment crossed the peninsula through this low pass, isolated species, and prevented terrestrial gene flow. Integration of geologic and genetic data will determine how volcano- tectonic processes shaped genetic diversity. 
    more » « less
  3. Abstract

    Soil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attributes can provide insight about ecological states and processes. Today, multiple research networks collect and provide SOC data, and robust, new technologies are available for managing, sharing, and analyzing large data sets. We advocate that the scientific community capitalize on these developments to augment SOC data sets via standardized protocols. We describe why such efforts are important and the breadth of disciplines for which it will be helpful, and outline a tiered approach for standardized sampling of SOC and ancillary variables that ranges from simple to more complex. We target scientists ranging from those with little to no background in soil science to those with more soil‐related expertise, and offer examples of the ways in which the resulting data can be organized, shared, and discoverable.

     
    more » « less